Minimal Resources for Fixed and Variable Job Schedules

We treat the following problem: There are n jobs with given processing times and an interval for each job's starting time. Each job must be processed, without interruption, on any one of an unlimited set of identical machines. A machine may process any job, but no more than one job at any point in t... Ausführliche Beschreibung

1. Person: Gertsbakh, Ilya
Weitere Personen: Stern, Helman I. verfasserin
Quelle: in Operations research Vol. 26, No. 1 (1978), p. 68-85
Weitere Artikel
Format: Online-Artikel
Sprache: English
Veröffentlicht: 1978
Beschreibung: Online-Ressource
Schlagworte: research-article
Online Zugang: Volltext
Volltext
Tags: Hinzufügen
Keine Tags. Fügen Sie den ersten Tag hinzu!
Anmerkung: Copyright: Copyright 1978 The Operations Research Society of America
LEADER 02254nma a2200277 c 4500
001 JST063732548
003 DE-601
005 20180606003909.0
007 cr uuu---uuuuu
008 150325s1978 000 0 eng d
024 8 |a 169892 
035 |a 169892 
040 |b ger  |c GBVCP 
041 0 |a eng 
100 1 |a Gertsbakh, Ilya 
245 1 0 |a Minimal Resources for Fixed and Variable Job Schedules  |h Elektronische Ressource 
300 |a Online-Ressource 
500 |a Copyright: Copyright 1978 The Operations Research Society of America 
520 |a We treat the following problem: There are n jobs with given processing times and an interval for each job's starting time. Each job must be processed, without interruption, on any one of an unlimited set of identical machines. A machine may process any job, but no more than one job at any point in time. We want to find the starting time of each job such that the number of machines required to process all jobs is minimal. In addition, the assignment of jobs to each machine must be found. If every job has a fixed starting time (the interval is a point), the problem is well-known as a special case of Dilworth's problem. We term it the fixed job schedule problem (FSP). When the job starting times are variable, the problem is referred to as the variable job schedule problem (VSP), for which no known exact solution procedure exists. We introduce the problems by reviewing previous solution methods to Dilworth's problem. We offer an approximate solution procedure for solving VSP based on the entropy principle of informational smoothing. We then formulate VSP as a pure integer programming problem and provide an exact algorithm. This algorithm examines a sequence of feasibility capacitated transportation problems with job splitting elimination side constraints. Our computational experience demonstrates the utility of the entropy approach. 
653 |a research-article 
700 1 |a Stern, Helman I.  |e verfasserin  |4 aut 
773 0 8 |i in  |t Operations research  |d Linthicum, Md : INFORMS  |g Vol. 26, No. 1 (1978), p. 68-85  |q 26:1<68-85  |w (DE-601)JST063672286  |x 1526-5463 
856 4 1 |u https://www.jstor.org/stable/169892  |3 Volltext 
912 |a GBV_JSTOR 
951 |a AR 
952 |d 26  |j 1978  |e 1  |h 68-85 

Ähnliche Einträge

Keine ähnlichen Titel gefunden

Privacy Notice Ask a Librarian New Acquisitions