M. D. S. codes and arcs in projective spaces: a survey

Let C be a code of length k over an alphabet A of size q greather or equal 2. Having chosen m with 2 m  k we impose the following condition on C: no two words agree in as many as m positions. It then follows that |C| qm. If |C|=qm, then C is called a Maximum Distance Separable code (M.D.S. ... Ausführliche Beschreibung

1. Person: Joseph A. Thas verfasserin
Quelle: In Le Matematiche (01.11.1992)
Weitere Artikel
Format: Online-Artikel
Sprache: English
French
Italian
Veröffentlicht: 1992
Beschreibung: Online-Ressource
Online Zugang: Online
Online
Online
Online
Volltext
Tags: Hinzufügen
Keine Tags. Fügen Sie den ersten Tag hinzu!
  Creative Commons License Source: Directory of Open Access Journals (DOAJ).
Zusammenfassung: Let C be a code of length k over an alphabet A of size q greather or equal 2. Having chosen m with 2 m  k we impose the following condition on C: no two words agree in as many as m positions. It then follows that |C| qm. If |C|=qm, then C is called a Maximum Distance Separable code (M.D.S. code). A k-arc in PG(n,q) is a set K of k points with k at least n+1 such that no n+1 points lie in a hyperplane. It can be shown that arcs and linear M.D.S. codes are equivalent objects. Here we give a survey of important results on k-arcs, in particular we survey the answers to three fundamental problems on arcs posed by B. Segre in 1955.
ISSN: 0373-3505

Ähnliche Einträge

Keine ähnlichen Titel gefunden

Privacy Notice Ask a Librarian New Acquisitions