Application of the Lyapunov Exponent to Evaluate Noise Filtering Methods for a Fed-batch Bioreactor for PHB Production

Large-scale fed-batch fermentations are often subject to noise carried by the feed streams. This noise corrupts the process data and may destabilize the fermentation. So it is important to retrieve clear signals from noisy data. This is done by noise filters. The performances of some commonly used f... Ausführliche Beschreibung

1. Person: Pratap R. Patnaik verfasserin
Quelle: In Bioautomation (01.04.2008)
Weitere Artikel
Format: Online-Artikel
Genre: Biotechnology, Life Sciences, Biology and Life Sciences, Medicine (General), Health Sciences, Biology
Veröffentlicht: 2008
Beschreibung: Online-Ressource
Online Zugang: Online
Online
Online
Online
Volltext
Tags: Hinzufügen
Keine Tags. Fügen Sie den ersten Tag hinzu!
  Creative Commons License Source: Directory of Open Access Journals (DOAJ).
LEADER 02233nma a2200409 c 4500
001 DOAJ00068385X
003 DE-601
005 20190329100837.0
007 cr uuu---uuuuu
008 171225s2008 000 0 und d
035 |a (DE-599)DOAJ9999383aeedd404faba8f7916d1da62d 
040 |b ger  |c GBVCP 
100 0 |a Pratap R. Patnaik  |e verfasserin  |4 aut 
245 1 0 |a Application of the Lyapunov Exponent to Evaluate Noise Filtering Methods for a Fed-batch Bioreactor for PHB Production  |h Elektronische Ressource 
300 |a Online-Ressource 
520 |a Large-scale fed-batch fermentations are often subject to noise carried by the feed streams. This noise corrupts the process data and may destabilize the fermentation. So it is important to retrieve clear signals from noisy data. This is done by noise filters. The performances of some commonly used filters have been studied for poly-β-hydroxybutyrate production by Ralstonia eutropha. In simulated experiments, Gaussian noise was added to the flow rates of the carbon and nitrogen substrates. The filters were compared by means of the Lyapunov exponents of the outputs and their closeness to the noise-free performance. Negative exponents indicate a stable fermentation. An auto-associative neural filter performed the best, followed by a combination of a cusum filter and an extended Kalman filter. Butterworth filters were inferior and inadequate. 
655 7 |a Biotechnology  |2 gnd 
655 7 |a Life Sciences  |2 gnd 
655 7 |a Biology and Life Sciences  |2 gnd 
655 7 |a Medicine (General)  |2 gnd 
655 7 |a Health Sciences  |2 gnd 
655 7 |a Biology  |2 gnd 
689 0 0 |a Biotechnology 
689 0 1 |a Life Sciences 
689 0 2 |a Biology and Life Sciences 
689 0 3 |a Medicine (General) 
689 0 4 |a Health Sciences 
689 0 5 |a Biology 
689 0 |5 DE-601 
773 0 8 |i In  |t Bioautomation  |g  (01.04.2008)  |w (DE-601)DOAJ000099201  |x 1313-261X 
856 4 0 |y DOAJ  |u https://doaj.org/article/9999383aeedd404faba8f7916d1da62d 
856 4 0 |u http://www.clbme.bas.bg/bioautomation/2008/vol_9.1/files/9_2.1.pdf 
856 4 0 |u https://doaj.org/toc/1313-261X 
856 4 0 |u https://doaj.org/toc/1312-451X 
912 |a GBV_DOAJ 
951 |a AR 
952 |j 2008  |b 01  |c 04 

Ähnliche Einträge

Keine ähnlichen Titel gefunden

Privacy Notice Ask a Librarian New Acquisitions